Developing Websites — Basic HTMIL

Introduction

You can make websites with very few tools. In this tutorial I’'m going to be using Microsoft Visual Studio Code, which
you can download here:

https://code.visualstudio.com/

but you can use any plain text editor, including good old Windows Notepad.

We’re going to build a simple webpage that looks like this:

v = a X
@ Page Tab Title X +
C @© File | C/Projects/html/index.html & © X% a D
Page Title Sub-itle
Aenean eu placerat augue. Class aptent taciti sociosqu
Lorem ipsum dolor sit amet, consectetur adipiscing elit. ﬂ(_{ litora torquent per COﬂUbl_a nostra, per inceptos
Aenean at metus lacinia, interdum odio in, sollicitudin hu‘nen.aeos. Donec sodales viverra metus sed)
elit. Pellentesque posuere dignissim faucibus. Nullam id ~ scelerisque. Pellentesque metus urna, ornare quis
congue augue. Curabitur vitae nisi orci. Sed eu vehicula ~congue accumsan, Pl?l\’lﬂaf feugiat eros. (Ufablml' n
tellus. Cras mattis ex in mi euismod, eu feugiat augue Veht‘convalhs‘ SOH{’:m‘dm neque Vel,_ laoreet ‘.‘UL
dapibus. In et cursus magna, sed fringilla ligula, Nulla ~ Vestibulum nec finibus metus. Curabitur condimentum,
nec suscipit odio. Curabitur in dolor sed arcu posuere dui ut lobortis laoreet, massa turpis sollicitudin massa,
interdum. Aliquam egestas cursus iaculis. Phasellus e a¢ tempus nisi tellus 1‘1 erat. Nam pellentesque
neque nec lectus dictum efficitur vel sed sapien. In consequat dolor, quis fringilla lacus tempus at.
pretium justo ac tortor facilisis, eu viverra erat Phasellus eu scelerisque hgul_a. Nam magna est,
maximus. Donec pretium est sit amet lacinia ultrices. euismod porttitor cursus ut, viverra nec ex. Proin
viverra est at neque mollis, eget egestas lectus cursus.
Nullam eget erat elementum. dapibus odio quis Donec malesuada vestibulum massa in laoreet. Aliquam
h < - dap Odio quis. ligula nibh, dignissim nec mi sed, ornare egestas eros.
aliquam massa. Nullam evismod mollis bibendum. I - 3 =
A 3] n eu enim nisl.
Morbi facilisis, tellus ac vestibulum mattis, quam nisi
euismod justo, ut semper orci ligula a odio. Quisque a
nulla ac nulla ultricies malesuada. Morbi molestie tortor
massa, eget varius risus aliquet sit amet. Cras vel libero
justo. Duis vel nunc porttitor. iaculis enim quis, sodales
nunc. Nulla consectetur lectus et leo dignissim, vitae
rutrum orci posuere. Curabitur sit amet volutpat dui,
eget hendrerit velit.
copyright 2023.
Building websites is all about managing files. First you need to create a < TG O - LeclDisk@ > Projecs
folder to contain all of the files that your website needs. Inside that ® New 2 son
. ” “ ” ~
folder, you should create 2 more folders: “images” and “style”. .
2 Shortcut
Inside the main project folder, you need to create a new Text Document: 7 e

[Bitmap image
7 »”,
Ca” |t IndeX.htm| . @Y Microsoft Word Document

& Microsoft Access Database

images B Microsoft PowerPaint Presentation

& Microsoft Publisher Document

style Do the same thing inside the “style” folder, Text Document

but create a text file called “style.css”. BRLRcg=c b crahest

G index, html =~ Compressed (zipped) Folder
1

https://code.visualstudio.com/

Basic structure

HTML files are plain text files containing Markup Language tags (that’s the ML part of HTML). All web pages start off
with the same structure. Using your text editor of choice, enter the following:

All HTML files start with the doctype element. This tells the web browser what version of HTML the file is using. The
html doctype is HTML version 5, which is the most modern version. The ensures that the browser will render the
page correctly.

The head element of an HTML page is where the browser looks to see what else it might need to display this
particular page.

The body element is where all of the actual page content is placed.

We’'ll create 3 new sections inside the body:

Notice that each section element has an
id="nav bar" id attribute. This is important later when
B we want to target each of these sections
with some CSS.

n

id="content

id="footer"

Inside the section that we’ve called
content let’s add two more nested
sections:

id="content"
id="1leftCol"

Two new sections each with a unique
identifier — values for id attributes

must be unique for each page.
id="rightCol">

Content

Now we have a structure for our page, we can start to add some content. It’s sometimes useful to have a big bunch
of text to use as a placeholder when you're designing a new web page. | use this website:

https://www.lipsum.com/

it generates a bunch of nonsense text that sort of looks like words and allows you to see what text might look like on
the page, without distracting you with actual words.

id="leftCol"
Page Title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean at met

Nullam eget erat elementum, dapibus odio quis, aliquam massa. Nullam e

Don’t try typing the Lorem ipsum bit out, there’s lots of it! Just copy and paste it from the website.
Do something similar in the right column too:

id="rightCol"
Sub-title

Aenean eu placerat augue. Class aptent taciti sociosqu ad litora to

Navigation
Let’s add a link to the navigation bar at the top:

id="nav_bar" This isn’t really much of a link.

href="index.html" >Home It just links back to the same
page we’re already on!

Footer

We don’t need much here, let’s just put
a copyright notice in there. We own all
our own work!

id="footer"

copyright 2023.

https://www.lipsum.com/

Giving it some style o

C @ File | CyProjects/htmi/index ntml B A G x»0OH

The page we’ve created doesn’t look like much. We need to add Hons

Page Title

some code to the style.css file that we created earlier, and We Need wiorsi amer constns wipiens et st

Pellentesque posuere dignissim faucibus. Nullam id congue augue. Cur
H . H mattis ex in mi enismed. eu faugiat augue dapibus. In et cursus
to link that file to our .html page so the browser Knows that it Needs | & i e mose s
el sed sapien. In pretium: justo ac tortor facilisis, eu viverra era

to load it.

Iacinia. interdum odio in. sollicitudin elit
tae nisi orci. Sed en vehicula telhis. Cras

gilla ligula. Nulla nec suscipit odio.
aculis. Phasellns eu neque nec lectus dictum efficitur
ams. Donee prefium est sit amet lacinia ultrices

Nullam euismod mollis bibendum. Morbi facilisis, tellus ac
nulla ac nulla ultner

nunc poriilor, iaculis cnim

. sonlales nunc. Nulla consectetur lectus et leo dignissim, vitae mutrum erei posuere. Curabitur sil amet volutpal dui, eget
Up in the head section of the html file, we need to add 3 things. -
Sub-title
Only 1 of these is strictly necessary, but the other 2 are USeful TRINGS |, . .. o e cios et sooss ot ot pr e s, s et s Do
sodales viverrs m seel nar fieug:
to have: bl o, o

¢ cons
Us ut, viverra nec ex. Proin
s lectus cursus. Donee malesuada vestibulum massa in loreel. Aliquam ligula nibh,
gestas eros. In ew enim nisl.

fringilla I

viverra est st neque mollis,
dignissim nec mi sed, orma

copyright 2023

charset="utf-8"
rel="stylesheet" type="text/css" href="style/style.css™
Page Tab Title

The middle line there, the link element is what tells the browser to go and get the style.css file, and apply all the rules
to this page when it renders it. The title element contains the text displayed in the page’s browser tab. The meta
element tells the browser what kinds of letters we’re using. We don’t really need to worry about that, just put it in
there for now.

Now that our stylesheet is attached, we can start to style the elements we have in the page.

This code all goes in the style.css file:

{ margin:@px; padding:0px; } Line 1 here is something | like to call a reset rule
the asterisk means that the rules apply to ALL of

the elements on the page. This rule sets both the
margin and the padding of all of the elements on
the page to zero.

body {

width:800px;
margin: Opx auto;

Line 3 is a rule that targets the body element on
the page. It sets the width of the body element
to 800 pixels wide and then sets the left/right margins to auto. This has the effect of making everything sit in the
middle of the browser window.

Box Model Aside

our reset rule, we only need to worry about it when we want
- _] to change the way something looks.

Margin
Bord The CSS Box Model describes how elements on a page are
________EI_F_E[______ - arranged. Each element — in our page so far we have section
I Padding I elements, we have paragraph elements, anchor elements and
I I— _____________ I I so on — have padding, a border and a margin. These
} I Content I I determine how each element sits against its neighbour. This
}] | I can get complicated, but by setting everything to zero with
| T [
I |

Navigation Bar

These rules will style our navigation bar at the top of the page:

#nav_bar {
background-color: [#362d2d;
color: WMiededes;

padding: 12px;
padding-right: 48px;

text-align:right;

#nav_bar a {
color: Mi#ededes;

Footer
#footer {
background-color: [#362d2d;
color: WMiededes;

Columns

#content {
padding: 24px;

overflow:auto;

}

#content hl {
font-size:32pt;
}

#content p {
margin-top:24px;
}

#leftCol {
width:48%;
float:left;

padding:@px 1%;
}
#rightCol {
width:48%;
float:right;

padding:@px 1%;

When we created our html page we
created 3 main sections and gave each
of them an id. One of those was
nav_bar.

Line 8 here uses something called a
selector, we start it with an octothorpe
(they’re not called hashtags!) which
tells the browser to look for an
element with the id specified.

Line 18 is another selector. It is
targeting all a elements found inside
the nav_bar section.

The rules themselves should be fairly
self-explanatory.

Footer is very simple too. We aren’t really doing
very much with it in this example, so it’s just
going to sit at the bottom and be the same
colour as the navigation bar.

Again, we use the id selectors to target the appropriate
elements on our page.

Most of the rules should be fairly self-explanatory again,
except for maybe the float rule.

Floating elements are actually a bit unfashionable these
days, and for layouts any more complex that we have
here we’d want to use the more modern flex-box layout.

float: left forces an element to line itself up against the
left-hand-side of its parent object (our content section),
right floats it to the right. By setting the left and right
column sections width to 48%, we leave enough space
for them to sit side-by-side.

You might think that they should take up 50% of the
parent element’s width, but that would cause them to
be too big, because we also add 1% padding to the left
and right of each element.

These sorts of oddities are why once you get to wanting
more complex layouts, flex-box is a much more
powerful tool.

An image
The only remaining item we haven’t covered is the image on the page.

We can add an image to an html page with the following element:

src="images/owl.jpg" alt="An Owl"

The image file needs to be in the images folder we created at the beginning of the project.

It’s also helpful to add a css rule to control the maximum
width of an image, especially when we’re using a fixed-
width page as we are here.

#content img {
max-width:200px;

And that’s it. A very simple HTML template that can be used to make a quick webpage about something interesting!

	Introduction
	Files
	Basic structure
	Content
	Navigation
	Footer
	Giving it some style
	Box Model Aside
	Navigation Bar
	Footer
	Columns

	An image

