
Developing Websites – Basic HTML
Introduc�on

You can make websites with very few tools. In this tutorial I’m going to be using Microso� Visual Studio Code, which
you can download here:

 htps://code.visualstudio.com/

but you can use any plain text editor, including good old Windows Notepad.

We’re going to build a simple webpage that looks like this:

Files
Building websites is all about managing files. First you need to create a
folder to contain all of the files that your website needs. Inside that
folder, you should create 2 more folders: “images” and “style”.

Inside the main project folder, you need to create a new Text Document:

Call it “index.html”:

Do the same thing inside the “style” folder,
but create a text file called “style.css”.

https://code.visualstudio.com/

Basic structure

HTML files are plain text files containing Markup Language tags (that’s the ML part of HTML). All web pages start off
with the same structure. Using your text editor of choice, enter the following:

All HTML files start with the doctype element. This tells the web browser what version of HTML the file is using. The
html doctype is HTML version 5, which is the most modern version. The ensures that the browser will render the
page correctly.

The head element of an HTML page is where the browser looks to see what else it might need to display this
par�cular page.

The body element is where all of the actual page content is placed.

We’ll create 3 new sections inside the body:

No�ce that each section element has an
id attribute. This is important later when
we want to target each of these sec�ons
with some CSS.

Inside the section that we’ve called
content let’s add two more nested
sec�ons:

Two new sections each with a unique
iden�fier – values for id atributes
must be unique for each page.

Content
Now we have a structure for our page, we can start to add some content. It’s some�mes useful to have a big bunch
of text to use as a placeholder when you’re designing a new web page. I use this website:

htps://www.lipsum.com/

it generates a bunch of nonsense text that sort of looks like words and allows you to see what text might look like on
the page, without distrac�ng you with actual words.

Don’t try typing the Lorem ipsum bit out, there’s lots of it! Just copy and paste it from the website.

Do something similar in the right column too:

Naviga�on
Let’s add a link to the naviga�on bar at the top:

This isn’t really much of a link.
It just links back to the same
page we’re already on!

Footer
We don’t need much here, let’s just put
a copyright no�ce in there. We own all
our own work!

https://www.lipsum.com/

Giving it some style
The page we’ve created doesn’t look like much. We need to add
some code to the style.css file that we created earlier, and we need
to link that file to our .html page so the browser knows that it needs
to load it.

Up in the head sec�on of the html file, we need to add 3 things.
Only 1 of these is strictly necessary, but the other 2 are useful things
to have:

The middle line there, the link element is what tells the browser to go and get the style.css file, and apply all the rules
to this page when it renders it. The title element contains the text displayed in the page’s browser tab. The meta
element tells the browser what kinds of leters we’re using. We don’t really need to worry about that, just put it in
there for now.

Now that our stylesheet is atached, we can start to style the elements we have in the page.

This code all goes in the style.css file:

Line 1 here is something I like to call a reset rule
the asterisk means that the rules apply to ALL of
the elements on the page. This rule sets both the
margin and the padding of all of the elements on
the page to zero.

Line 3 is a rule that targets the body element on
the page. It sets the width of the body element

to 800 pixels wide and then sets the le�/right margins to auto. This has the effect of making everything sit in the
middle of the browser window.

Box Model Aside

The CSS Box Model describes how elements on a page are
arranged. Each element – in our page so far we have section
elements, we have paragraph elements, anchor elements and
so on – have padding, a border and a margin. These
determine how each element sits against its neighbour. This
can get complicated, but by se�ng everything to zero with
our reset rule, we only need to worry about it when we want
to change the way something looks.

Naviga�on Bar

These rules will style our naviga�on bar at the top of the page:

When we created our html page we
created 3 main sections and gave each
of them an id. One of those was
nav_bar.

Line 8 here uses something called a
selector, we start it with an octothorpe
(they’re not called hashtags!) which
tells the browser to look for an
element with the id specified.

Line 18 is another selector. It is
targe�ng all a elements found inside
the nav_bar section.

The rules themselves should be fairly
self-explanatory.

Footer
Footer is very simple too. We aren’t really doing
very much with it in this example, so it’s just
going to sit at the botom and be the same
colour as the naviga�on bar.

Columns
Again, we use the id selectors to target the appropriate
elements on our page.

Most of the rules should be fairly self-explanatory again,
except for maybe the float rule.

Floating elements are actually a bit unfashionable these
days, and for layouts any more complex that we have
here we’d want to use the more modern flex-box layout.

float: left forces an element to line itself up against the
le�-hand-side of its parent object (our content section),
right floats it to the right. By se�ng the le� and right
column sections width to 48%, we leave enough space
for them to sit side-by-side.

You might think that they should take up 50% of the
parent element’s width, but that would cause them to
be too big, because we also add 1% padding to the le�
and right of each element.

These sorts of oddi�es are why once you get to wan�ng
more complex layouts, flex-box is a much more
powerful tool.

An image
The only remaining item we haven’t covered is the image on the page.

We can add an image to an html page with the following element:

The image file needs to be in the images folder we created at the beginning of the project.

It’s also helpful to add a css rule to control the maximum
width of an image, especially when we’re using a fixed-
width page as we are here.

And that’s it. A very simple HTML template that can be used to make a quick webpage about something interes�ng!

	Introduction
	Files
	Basic structure
	Content
	Navigation
	Footer
	Giving it some style
	Box Model Aside
	Navigation Bar
	Footer
	Columns

	An image

